正文

人类获得首张黑洞照片

  上世纪60年代,英国剑桥大学卡尔迪许实验室的马丁·赖尔(Ryle)利用基线干涉的原理,发明了综合孔径射电望远镜,大大提高了射电望远镜的分辨率,其主要的工作原理就是让放在两或多个地方的射电望远镜同时接收同一个天体的无线电波,考虑到地球自转以及望远镜位置,电磁波到达不同望远镜存在光程差,可以对不同望远镜接收到的信号进行相关处理得倒干涉条纹,此时这台虚拟望远镜的尺寸就相当于望远镜之间最大距离,因此这种化整为零的方法大大提高了望远镜的分辨率,赖尔也为此项发明获得1974年诺贝尔物理学奖。目前在从射电到伽马射线不同波段望远镜中,射电干涉阵的分辨率为最高,几个著名的射电干涉阵包括美国甚大阵(VLA)、美国甚长基线干涉阵(VLBA)、中国加入的欧洲甚长基线干涉阵(EVN)以及日本空间射电望远镜VSOP等。上述几个地面射电望远镜阵的等效直径几乎相当于地球大小(约上万公里),从望远镜分辨率公式来看,如果继续提高分辨率的话,只有建造更短波长的射电望阵列。随着技术的发展,毫米波望远镜技术逐渐成熟并开始建设。到2017年,全球不同国家有近10台亚毫米波望远镜可以投入观测,分布从南极到北极,从美国到欧洲,组成了一个相当于地球大小的巨大虚拟望远镜,主要包括南极的SPT、智利的ALMA(阵)和APEX、墨西哥的LMT、美国亚利桑那的SMT、美国夏威夷的JCMT和SMA(阵)、西班牙的PV、格陵兰岛GLT。这些望远镜工作在更短的毫米到亚毫米波段,结合地球大小的尺寸,因此达到了前所未有的超高分辨率,如在230GHz(1.3毫米),分辨率达到了20微角秒,比哈勃望远镜的分辨率提高了近2000倍,这个分辨率几乎接近部分近邻超大质量黑洞视界尺度,可以看清黑洞视界的边缘。在这些望远镜中,ALMA阵列最为重要,其灵敏度最高,耗资近150亿美金。到目前为止,两个黑洞视界分辨率最高的天体分别是我们银河系中心黑洞与梅西耶M87中心黑洞,这两个巨型黑洞质量分别为410万和60亿个太阳质量。银河系和M87的中心黑洞离地球分别为2.7万光年和5600万光年,M87中心黑洞比银心黑洞质量大了近1500倍,但距离远了2000倍,从而导致这两个黑洞在天空上投影大小几乎相当(这一点非常像月亮和太阳,看上去它们大小也差不多),其黑洞视界角大小分别为7和10个微角秒,这已经接近“视界望远镜”的角分辨率了。

  图4.1-参与观测的‘视界’望远镜阵列

  天文学家Bardeen1973年就曾指出,如果在黑洞周围有盘状等离子体并产生电磁辐射的话,黑洞看起来不是纯“黑”的。2000年,荷兰天文学家Fackle等人首次采取广义相对论下框架下光线追踪的办法,基于我们银河系中心黑洞基本参数,采用了光学薄的厚等离子体盘,首次呈现出黑洞可能的模样(视线方向接近吸积盘法向,如图5.1),黑洞周围有一个不对称的光环,中心比较暗的区域就是黑洞的“暗影”,黑洞阴影大小与黑洞质量有关,与黑洞自转和视角等关系不大。通过广义相对论计算发现光环几乎呈圆形,圆环直径大约为10倍引力半径(由于光线弯曲等效应,圆环大小并不等于黑洞视界大小)。由于多普勒效应,旋转等离子体的速度如果朝向我们,则辐射变亮,如果远离我们,则变暗,因此我们会看到不对称的圆环。当时Falcke等人根据射电望远镜发展预期就提出在未来几年就可看到黑洞的阴影。利用光线追踪的办法,中国科学技术大学袁业飞教授后来基于银河系中心新的观测和更理想的低效率吸积盘模型重新计算了该黑洞影像。

  图5.1-黑洞吸积盘正面看呈现的图像

  资料来源:Falckeetal.2000,ApJ,528,13

  《星际穿越》号称是人类历史上最烧脑的电影,那是导演诺兰的首部太空题材电影,并且邀请了天体物理学家索恩给出非常专业的指导,很多场景都经过科学的计算。宣传片中那个黑洞图片在很多人的脑海中都留下了深刻印象(如图5.2),这个图像就是假设冈都亚都这个巨型黑洞周围存在一个薄吸积盘,其中黑洞为一亿个太阳质量,黑洞周围的吸积盘就是我们在第二节中提到的标准吸积盘,它厚度相对于大小而言可以忽略不计(也叫薄盘)。电影中的图像,可不是艺术家的画作,而是利用大型计算器在广义相对论框架下精确计算的结果,因此这个电影首次把一个黑洞和吸积盘的影像呈现出来,图5.2中黑洞上方和下方图像是黑洞后面吸积盘光线弯曲之后被我们看到的图像。这个图像就是黑洞“视界”望远镜希望看到的样子。当然需要指出,《星际穿越》计算中采取了标准吸积盘,这样的黑洞在近邻宇宙中还没有适合观测的。即使有,我们也不能通过目前的“视界”望远镜观测到它,因为标准薄盘辐射的是黑体谱,对于千万到数十亿个太阳质量的黑洞来说,它的辐射主要集中在光学波段,而视界望远镜观测波段在亚毫米波段。因此,《星际穿越》中的这个黑洞,在相当长的时间里,我们是无法观测到的,除非光学望远镜干涉技术得到跨越式发展。

  图5.2 《星际穿越》中黑洞影像,其中假设黑洞为1亿个太阳质量,吸积盘为薄盘

  黑洞因贪婪而闻名于世,但有一小部分黑洞还是没有那么贪婪,把其中一下部分物质以极高的速度抛向了宇宙空间,这就是所谓的喷流(为了给黑洞正名,需要指出有很多黑洞可能还比较慷慨,可能把90%以上的吸积物质又抛向了宇宙空间,即盘风,可参考上海天文台袁峰研究员工作)。喷流已经在不同尺度天体中都发现了,比如黑洞X射线双星、超大质量黑洞天体、大质量恒星塌缩或双中子合并导致的伽马射线暴等(可参考华中科技大学汪定雄教授《黑洞系统吸积与喷流》一书)。目前关于喷流的产生机制依旧是个谜,特别是黑洞附近的等离子体如何被准直并加速到接近光速远离黑洞的。由于星际等离子体都带有一定的磁场,当这些等离子体被黑洞俘获以后,会向黑洞靠近,等离子体中的磁场也会随着等离子体一边旋转一边向黑洞靠近,形成螺旋形结构(如图6.1和6.2)。一些还未掉入黑洞的等离子体就有可能顺着磁力线改变方向从而远离黑洞,由于磁场的作用,远离的等离子体会被加速和准直,在一定距离以后速度可以达到0.9甚至0.999倍光速以上,这就形成了我们看到的相对论性喷流现象(具体吸积盘磁场和喷流形成等可参考上海天文台曹新伍研究员和华中科技大学吴庆文等人工作)。如果相对论性喷流指向我们地球,相对论效应导致喷流的辐射会被放大几百到几万倍,以至于我们看到的辐射可能完全由喷流辐射主导,其黑洞吸积盘或星系的辐射完全看不到(比如耀变体blazar,可参考广州大学樊军辉教授等人的工作)。喷流对理解很多高能天体物理现象有至关重要的作用,但总体而言,我们对喷流如何形成、能量从哪里来(黑洞还是吸积盘)、如何准直、如何加速、能量如何耗散等关键物理过程都还知之甚少,有待深入研究,视界望远镜凭借其超高的分辨率为研究这个问题提供了重要手段,在未来几年时间里,有待解开一些谜团。

来源:知社学术圈 吴庆文
爱科学

上一篇:中国科研人员开发出新型“基因剪刀”载体

下一篇:我们需要什么样的师生关系?

推荐信息

登录注册
欢迎内容投稿或举报!E-mail: ikx@ikx.cn
Copyright © 爱科学 iikx.com