正文

田刚:数学内外的奥秘

  数学结论最基本的要求是 “正确”,无论多么显然的结论,都需要从已知的确定结论通过正确的推理得出。这成为数学最显著的特征。几何原本提出五大公设,其中第五公设相比前四个公设不那么显而易见。

  那么,第五公设能否作为公设,而作为定理?循着这条路线望去,这就是最著名的、争论了长达两千多年的关于 “平行线理论” 的讨论。由此产生了很多意想不到的、具有重要价值和意义的研究成果。

  在1830年左右,俄国罗巴切夫斯基,匈牙利雅诺什发现了第五公设不可证明,创立了非欧几何学。雅诺什在研究非欧几何学的过程中也遭到了家庭社会的冷漠对待,他的父亲——数学家鲍耶·法尔卡什劝他放弃。高斯也发现第五公设不能证明,并且研究了非欧几何。但是高斯害怕这种理论会遭到教会力量的打击,不敢公开发表。可见探索真理的道路并不是一帆风顺的,是非常艰苦的,需要持之以恒的努力和坚定的信念。

  双曲几何中有四种常用模型,庞加莱圆盘模型是其中一种,如下图所示,有无穷多条线通过一个给定的点且平行于一条给定的线。

  庞加莱圆盘

  著名数学家黎曼1851年创立黎曼几何,引进了流形和度量的概念,证明曲率是度量的唯一内涵不变量,具有划时代的意义。从欧几里得的第五条公设引发的关注和思考,产生了非欧几何诸多重要的研究方向,这些研究都并是不以“有用” 作为研究原点的,但是最终证明是非常有价值的。1915年,爱因斯坦创立了新的引力理论——广义相对论,黎曼几何成为其重要工具。

  黎曼像

  数学研究的最初目的往往不是为了功利,最后却获得特别的效果和重要的应用。数学是不以 “有用” 为研究的原点,也就是说数学本身是非常纯粹的。好的数学并不是仅仅屈从于某个具体的目的,但是一旦取得了数学中思维的突破,实际上它却又是极为 “有用” 的。所以我一直都认为数学是不以 “有用” 为研究的原点,实际上却又是极为有用的学科,事实上,数学无处不在。下面我们一起具体来看。

  数学的简洁性是人类思想表达经济化要求的反映,它同样给人以美感,给人很纯粹的感觉。爱因斯坦说过:“美在本质上终究是简单性。”比如欧拉公式,无法说清楚有多少凸多面体,但它们都必须服从欧拉公式,且由此可推出只存在5种正多面体。

  多面体的欧拉公式实际是欧拉示性数的特别情形,这是一个拓朴不变量。上世纪40-60年代,示性数理论得到进一步发展, 引进了陈数、庞特里亚金数,证明了 Gauss-Bonnet-Chern 定理,指标定理。这些新理论与物理中规范场论有紧密联系。在凝聚态物理中, 量子霍尔效应的拓扑序可用示性数描述。

Gauss-Bonnet-Chern定理

  Gauss-Bonnet-Chern定理

来源:中国数学会 田刚
爱科学

上一篇:从引力到引力波,36年专注一个问题

下一篇:再谈研究生毕业论文答辩技巧和需注意的问题

推荐信息

登录注册
欢迎内容投稿或举报!E-mail: ikx@ikx.cn
Copyright © 爱科学 iikx.com